Lähes kaikki mikä jollakin tavalla surisee, pörisee, kolisee, paukkuu, soittaa ja laulaa on etusijalla....
lauantai 26. maaliskuuta 2016
Hyvää Pääsiäistä 2016 Happy Easter
Pääsiäistervehdys kaikille vierailijoille - Easter Greetings for all visitors
Mitä kauemmaksi nuoruus vetäytyy,
sitä kauniimmaksi käy se maailma,
.....varhaiskevään höyryävä aamu,
........koivujen vihreä hämärä.
Ja sydän lyö surullisia pehmeitä säveliä,
kuin vanha ullakolle unohtunut kielisoitin.
Even though the Earth is sunk in sadness,
And all its children know that they will die,
Serenity like music calms this madness,
Touching us with truth that needs no eye.
Each soul in fear and trembling waits to see
Reason drown in one last ecstasy.
torstai 24. maaliskuuta 2016
Tien kunnostus höylällä - Road repair to grader
Tiehöylä eli tiekarhu, joskus myös maantiekarhu, on maanteiden hoitoon ja rakentamiseen tarkoitettu järeä työkone, jolla on tarkoitus ensisijaisesti tasoittaa ja muotoilla tien rakennekerrosten pintoja tai sorateiden pintaa.
Veekmas FG 2428 / Engine Cummins QSL8.9 / 216 kW
Tiehöylässä voidaan käyttää yhdestä kolmeen terää. Mahdolliset terien paikat ovat etupyörien edessä, etu- ja takapyörien välissä ja takapyörien takana. Useimmin höylässä käytetään vain yhtä, etu- ja takapyörien välissä olevaa terää, jonka korkeustasoa ja kaltevuutta voidaan säädellä hydrauliikan avulla.
Tiehöylän terän säätelyä on helpotettu 3D-koneohjausta kehittämällä. Tällaiset 3D-ohjatut tiehöylät ovat yleistyneet varsinkin Ruotsissa ja Norjassa 2000-luvulla. Perusperiaatteena 3D-koneohjauksessa on se, että joko robottitakymetrillä tai RTK-GPS:llä paikannetaan tiehöylä ja tiehöylän on-board tietokoneeseen kytketyt kallistusantureiden avulla paikannetaan terän asento. On-Board-tietokoneeseen on syötetty rakennettavan tierakenteen koneohjausmalli, jolloin tietokone tietää missä asennossa terän pitäisi olla kullakin hetkellä. Ohjaajan työksi jää periaatteessa vain tiehöylän ohjaaminen ja kaasun painaminen.
--------
Gravel roads require much more frequent maintenance than paved roads, especially after wet periods and when accommodating increased traffic. Wheel motion shoves material to the outside (as well as in-between travelled lanes), leading to rutting, reduced water-runoff, and eventual road destruction if unchecked. As long as the process is interrupted early enough, simple re-grading is sufficient, with material being pushed back into shape.
Segments of gravel roads on grades also rut easily as a result of flowing water. When grading or building the road, waterbars are used to direct water off the road. As an alternative method, humps can be formed in the gravel along the road to impede water flow, thereby reducing rutting.
Another problem with gravel roads is washboarding — the formation of corrugations across the surface at right angles to the direction of travel. They can become severe enough to cause vibration in vehicles so that bolts loosen or cracks form in components. Grading removes the corrugations, and reconstruction with careful choice of good quality gravel can help prevent them reforming. Additionally, installing a cellular confinement system will prevent the washboard-like corrugations from occurring.
Gravel roads are often found in cold climates because they are less vulnerable to freeze / thaw damage than asphalt roads. The inferior surface of gravel is not an issue if the road is covered by snow and ice for extended periods.
Although well-constructed and graded gravel roads are suitable for speeds of 100 km/h (60 mph), driving on them requires far more attention to variations of the surface and it is easier to lose control than on a paved road. In addition to potholes, ruts and loose stony or sandy ridges at the edges or in the middle of the road, problems associated with driving on gravel roads include:
- sharper and larger stones cutting and puncturing tires, or being thrown up by
the wheels and damaging the underside, especially puncturing the fuel tank
of unmodified cars
- stones skipping up hitting the car body, lights or windshields
when two vehicles pass at high speed
- dust thrown up from a passing vehicle reducing visibility
- washboard' corrugations cause loss of control or damage to vehicles
due to excessive vibration
- skidding on mud after rain
- vehicle fishtailing as a result of ruts in the surface of the gravel
- In higher rainfall areas, the increased camber required to drain water,
and open drainage ditches at the sides of the road, often cause vehicles
with a high centre of gravity, such as trucks and off-road vehicles, to overturn
if they do not keep close to the crown of the road
- Tire wear increases by 40–50% on gravel roads
- Excess dust permeates door-opening rubber moulding breaking the seal
- Lost binder in the form of road dust, when mixed with rain,
will wear away the painted surfaces of vehicles
- Many gravel roads are only one lane wide or slightly larger,
thus requiring special attention when driving at higher speeds
Grader Vammas RG6V + Kubota 5700 tractor
Gehl MG 747
Laser Grader 106DW-P
Veekmas FG 2428 / Engine Cummins QSL8.9 / 216 kW
Tiehöylässä voidaan käyttää yhdestä kolmeen terää. Mahdolliset terien paikat ovat etupyörien edessä, etu- ja takapyörien välissä ja takapyörien takana. Useimmin höylässä käytetään vain yhtä, etu- ja takapyörien välissä olevaa terää, jonka korkeustasoa ja kaltevuutta voidaan säädellä hydrauliikan avulla.
Tiehöylän terän säätelyä on helpotettu 3D-koneohjausta kehittämällä. Tällaiset 3D-ohjatut tiehöylät ovat yleistyneet varsinkin Ruotsissa ja Norjassa 2000-luvulla. Perusperiaatteena 3D-koneohjauksessa on se, että joko robottitakymetrillä tai RTK-GPS:llä paikannetaan tiehöylä ja tiehöylän on-board tietokoneeseen kytketyt kallistusantureiden avulla paikannetaan terän asento. On-Board-tietokoneeseen on syötetty rakennettavan tierakenteen koneohjausmalli, jolloin tietokone tietää missä asennossa terän pitäisi olla kullakin hetkellä. Ohjaajan työksi jää periaatteessa vain tiehöylän ohjaaminen ja kaasun painaminen.
--------
Gravel roads require much more frequent maintenance than paved roads, especially after wet periods and when accommodating increased traffic. Wheel motion shoves material to the outside (as well as in-between travelled lanes), leading to rutting, reduced water-runoff, and eventual road destruction if unchecked. As long as the process is interrupted early enough, simple re-grading is sufficient, with material being pushed back into shape.
Segments of gravel roads on grades also rut easily as a result of flowing water. When grading or building the road, waterbars are used to direct water off the road. As an alternative method, humps can be formed in the gravel along the road to impede water flow, thereby reducing rutting.
Another problem with gravel roads is washboarding — the formation of corrugations across the surface at right angles to the direction of travel. They can become severe enough to cause vibration in vehicles so that bolts loosen or cracks form in components. Grading removes the corrugations, and reconstruction with careful choice of good quality gravel can help prevent them reforming. Additionally, installing a cellular confinement system will prevent the washboard-like corrugations from occurring.
Gravel roads are often found in cold climates because they are less vulnerable to freeze / thaw damage than asphalt roads. The inferior surface of gravel is not an issue if the road is covered by snow and ice for extended periods.
Although well-constructed and graded gravel roads are suitable for speeds of 100 km/h (60 mph), driving on them requires far more attention to variations of the surface and it is easier to lose control than on a paved road. In addition to potholes, ruts and loose stony or sandy ridges at the edges or in the middle of the road, problems associated with driving on gravel roads include:
- sharper and larger stones cutting and puncturing tires, or being thrown up by
the wheels and damaging the underside, especially puncturing the fuel tank
of unmodified cars
- stones skipping up hitting the car body, lights or windshields
when two vehicles pass at high speed
- dust thrown up from a passing vehicle reducing visibility
- washboard' corrugations cause loss of control or damage to vehicles
due to excessive vibration
- skidding on mud after rain
- vehicle fishtailing as a result of ruts in the surface of the gravel
- In higher rainfall areas, the increased camber required to drain water,
and open drainage ditches at the sides of the road, often cause vehicles
with a high centre of gravity, such as trucks and off-road vehicles, to overturn
if they do not keep close to the crown of the road
- Tire wear increases by 40–50% on gravel roads
- Excess dust permeates door-opening rubber moulding breaking the seal
- Lost binder in the form of road dust, when mixed with rain,
will wear away the painted surfaces of vehicles
- Many gravel roads are only one lane wide or slightly larger,
thus requiring special attention when driving at higher speeds
Grader Vammas RG6V + Kubota 5700 tractor
Gehl MG 747
Laser Grader 106DW-P
tiistai 15. maaliskuuta 2016
Vaijeri Temmes cable backhoe
Temmes kaivinkoneiden valmistus alkoi raahe kaupungissa. Kaivurin nimi annettiin valmistuspaikan nimen mukaan Temmes, joka tuohon aikaan oli oma kunta, ennen kuin se myöhemmin liitettiin Raahen kaupunkiin.
Temmes ja Fordson Major
Kaivinkonetta voitiin käyttää pistokauha-koneena, esim lastauksessa soramontuilla tai veto-kauha kaivurina ojaa kaivettaessa. Kauhan tilavuus oli 120 litraa, ja koneen
vaatima teho oli vähintään 15 hv, joten kaikki sen aikaiset traktorit olivat riittävän tehokkaita sitä käyttämään. Kaivuri painoi 900 kiloa, joten traktorin piti olla ainakin
tämän painoinen tai mielellään painavampi.
Myöhemmin koneesta valmistettiin myös puomilla hinattava perävaunu-malli, jonka kauha oli 140 litraa ja koneen työpaino oli 1320 kg, voimansiirto akselilla traktorista.
Temmes kaivinkoneita valmistettiin 1967 vuoteen asti, jolloin hydrauliset kaivurit olivat jo vallanneet markkinat.
TEMMES KAIVURI / BACKHOE-SHOVEL
towable and backhoe / traktori-kaivuri ja hinattava
Puomilla hinattavien, peräkärry tyylisten kaivurien perus-ideana oli paljolti se seikka
että suomessa oli tuolloin vielä voimassa tuontirajoitukset, jolla haluttiin hillitä tuota kovalla valuutalla tehtäviä kauppoja ja valtio tahtoi säästää kallista valuutan käyttöä.
Suuret keskusliikkeet pystyivät kiertämään sääntöä, ja toivat maahan traktoreita joiden myynti nimike oli voiman-lähde, tai perus-kone, koska työkoneiden tuontiin sai helpommin luvan, kuin traktoriin. Keskusliike myi siis kaivinkoneen ja voima-lähteen
joka oli traktori, ja maanviljelijät ostivat, koska traktorilla oli paljon muuta käyttöä.
Tästä syystä hinattavat kaivinkoneet saivat kohtalaisen hyvän suosion, kun traktori oli pelto-töissä ja muina aikana kaivu- tai kuormaus- työssä, lisä ansioissa, joka sopi hyvin koneen omistajalle.
TEMMES-KAIVURI JA KEKSIJÄT / BACKHOE AND INVENTORS
Temmes ja Fordson Major
Kuten kuvasta huomaa, koneen käyttö asento ei ollut aivan parhaita ergonomialtaan.
Paras käyttö koneella saavutettiin, kun kuljettaja oli lähes seisovassa asennossa, ja ottaa tukea istuimesta, samalla käyttäen jaloilla jarrupolkimia. Paras työtulos saavutettiin, kun liikkui kokoajan, kulettajan tehdessä jo vastaliikettä päinvastaiseen
suuntaan, minne kauha oli liikkumassa, ja tämä sama toimi kaikilla vaijeri koneilla
koska vaijeri koneen kuljettaja käyttää käsillään kykimiä, jotka ovat vinssin akselilla
Paras työtulos saavutettiin, kun liikkui kokoajan, kulettajan tehdessä jo vastaliikettä päinvastaiseen suuntaan, minne kauha oli liikkumassa, ja tämä sama toimi kaikilla vaijeri koneilla koska vaijeri koneen kuljettaja käyttää käsillään kykimiä, jotka ovat samalla vinssin akselilla, ja keskeytymätön liike takaa, ettei vaijeri löysty ja putoa pois juoksupyörältä
--------------------------
Temmes valmisti myös raskaampia vaijerikäyttöisiä ja pyöriviä kaivinkoneita.
Roima, vaijeri-Kone / Raunchy, cable-exavator
Temmes ja Fordson Major
Kaivinkonetta voitiin käyttää pistokauha-koneena, esim lastauksessa soramontuilla tai veto-kauha kaivurina ojaa kaivettaessa. Kauhan tilavuus oli 120 litraa, ja koneen
vaatima teho oli vähintään 15 hv, joten kaikki sen aikaiset traktorit olivat riittävän tehokkaita sitä käyttämään. Kaivuri painoi 900 kiloa, joten traktorin piti olla ainakin
tämän painoinen tai mielellään painavampi.
Myöhemmin koneesta valmistettiin myös puomilla hinattava perävaunu-malli, jonka kauha oli 140 litraa ja koneen työpaino oli 1320 kg, voimansiirto akselilla traktorista.
Temmes kaivinkoneita valmistettiin 1967 vuoteen asti, jolloin hydrauliset kaivurit olivat jo vallanneet markkinat.
TEMMES KAIVURI / BACKHOE-SHOVEL
towable and backhoe / traktori-kaivuri ja hinattava
Puomilla hinattavien, peräkärry tyylisten kaivurien perus-ideana oli paljolti se seikka
että suomessa oli tuolloin vielä voimassa tuontirajoitukset, jolla haluttiin hillitä tuota kovalla valuutalla tehtäviä kauppoja ja valtio tahtoi säästää kallista valuutan käyttöä.
Suuret keskusliikkeet pystyivät kiertämään sääntöä, ja toivat maahan traktoreita joiden myynti nimike oli voiman-lähde, tai perus-kone, koska työkoneiden tuontiin sai helpommin luvan, kuin traktoriin. Keskusliike myi siis kaivinkoneen ja voima-lähteen
joka oli traktori, ja maanviljelijät ostivat, koska traktorilla oli paljon muuta käyttöä.
Tästä syystä hinattavat kaivinkoneet saivat kohtalaisen hyvän suosion, kun traktori oli pelto-töissä ja muina aikana kaivu- tai kuormaus- työssä, lisä ansioissa, joka sopi hyvin koneen omistajalle.
TEMMES-KAIVURI JA KEKSIJÄT / BACKHOE AND INVENTORS
Temmes ja Fordson Major
Kuten kuvasta huomaa, koneen käyttö asento ei ollut aivan parhaita ergonomialtaan.
Paras käyttö koneella saavutettiin, kun kuljettaja oli lähes seisovassa asennossa, ja ottaa tukea istuimesta, samalla käyttäen jaloilla jarrupolkimia. Paras työtulos saavutettiin, kun liikkui kokoajan, kulettajan tehdessä jo vastaliikettä päinvastaiseen
suuntaan, minne kauha oli liikkumassa, ja tämä sama toimi kaikilla vaijeri koneilla
koska vaijeri koneen kuljettaja käyttää käsillään kykimiä, jotka ovat vinssin akselilla
Paras työtulos saavutettiin, kun liikkui kokoajan, kulettajan tehdessä jo vastaliikettä päinvastaiseen suuntaan, minne kauha oli liikkumassa, ja tämä sama toimi kaikilla vaijeri koneilla koska vaijeri koneen kuljettaja käyttää käsillään kykimiä, jotka ovat samalla vinssin akselilla, ja keskeytymätön liike takaa, ettei vaijeri löysty ja putoa pois juoksupyörältä
--------------------------
Temmes valmisti myös raskaampia vaijerikäyttöisiä ja pyöriviä kaivinkoneita.
Roima, vaijeri-Kone / Raunchy, cable-exavator
perjantai 11. maaliskuuta 2016
Early Hydraulics - Varhainen hydrauliikka
Joseph Bramah patented the hydraulic press in 1795. While working at Bramah's shop, Henry Maudslay suggested a cup leather packing. Because it produced superior results, the hydraulic press eventually displaced the steam hammer from metal forging.
To supply small scale power that was impractical for individual steam engines, central station hydraulic systems were developed. Hydraulic power was used to operate cranes and other machinery in British ports and elsewhere in Europe. The largest hydraulic system was in London. Hydraulic power was used extensively in Bessemer steel production.
Hydraulic power was also used for elevators, to operate canal locks and rotating sections of bridges.
Some of these systems remained in use well into the twentieth century.
-------------------
Vickers was always interested in machinery and mechanics and was a self-taught master machinist. He served in World War I in France with the US Army Signal Corps, where he learned about the first generations of electronics and radio. Returning to southern California after the war, he founded Vickers Manufacturing Co., later to be called Vickers Inc.
Initially his company was principally engaged in general mechanical and machining work. The famous author and sportsman Zane Grey once came to his shop to have a large salt water fishing reel repaired. Grey decided that the young Harry Vickers was a man with a future, and offered to arrange for him to be tutored in calculus and other engineering disciplines at night by professors from the University of Southern California.
Vickers mechanical ability in combination with his electronic and engineering training formed the basis for his ability to invent, test and manufacture his early hydraulic innovations, which included the first hydraulic power steering system. He went on to invent numerous key components fundamental to the rapid growth of the fluid power industry, including his most famous innovation, the balanced vane pump. Vickers Inc. grew steadily, eventually moving its headquarters to Detroit to be closer to its major automotive and industrial customers.
He was called the "Father of Industrial Hydraulics" by the American Society of Mechanical Engineers, who gave him the Society's highest award, the ASME Medal, in 1956.
---------------------------------
Joseph Bramah patentoi hydraulisen puristimen vuonna 1795. Työskenteli Bramah kaupassa, kun Henry Maudslay ehdotti kupin pakkaamista käärimällä sen nahkaan.
Koska se tuotti erinomaisen työtehon hydraulisella puristimella, hieman myöhemmin siirryttiin käyttämään menetelmää höyry käyttöisessä vasarassa metalli taonnassa.
Menetelmä kehitti voimaa joka oli pienessä tilassa.
Höyrykoneesta voimansa saava järjestelmä tuotti pieneen tilavuuteen pakattua työntö tai nosto-voimaa joka oli käytännöllistä ja jonka perusteella hydrauliset järjestelmät kehitettiin nykyiseen muotoonsa
Single action piston cylinter / Yksitoimi sylinteri (työntö)
Hydrauli voimaa käytettiin nostomissa ja muissa koneissa Englannin satamissa ja muuallakin Euroopassa. Suurin hydraulinen järjestelmä oli Lontoossa. Hydraulinen voima on käytetty myös suuressa mittakaavassa Bessemer teräksen tuottamisessa.
Kaksi toimi sylinteri (työntö - veto)
Hydraulista voimaa hyödynnettiin myös hissien toiminnassam kanavan lukkojen ja erilaisten siltojen pyörivissa osissa. Muutama näistä järjestelmistä oli käyttössä yhä pitkälle seuraavalle vuosisadalle.
Harry Franklin Vickers oli mies jota kutsutaan Teollisuus Hydrauliikan Isäksi. (ASME)
Vickersiä oli aina kiinnostanut erilaiset koneet ja niiden mekaniikka, hän oli itseoppinut taitava koneistaja joka palveli ensimmäisen maailmansodan aikana Yhdysvaltojen armeijan Singnaali joukoissa Ranskassa, misä hän tutustui ja oppi enimmäisen sukupolven elektroniikkaa ja radio menetelmiä.
Aluksi hän suoritti yleensä pääasiassa mekaanisia töitä ja erilaisia koneistustöitä. Kuuluisa kirjailija ja urheilija Zane Grey tuli erään kerran hänen liikkeeseen ja pyysi korjaamaan suurta suolaisen veden kalastus kelaa. Korjauksen jälkeen Grey näkee, että nuori Harry Vickersin oli mies, jolla on tulevaisuus, ja tarjoutui järjestämään niin että hän voi saada iltaisin opetusta laskennassa ja muissa suunnittelu osa-alueissa professoreilta Etelä Karoliinan Yliopistossa.
Vickersin mekaaniikan taidot yhdistettynä sähkö- ja insinöörialan koulutukseen oli se perusta joka yhdessä hänen kykyjensä kanssa teki mahdolliseksi valmistaa varhaiset hydrauliset keksinnöt, joista yksi oli ensimmäinen hydrauli toiminen ohjaustehostin.
Vickers jatkoi, keksien monta ratkaisevaa vaikutinta ja avaintekijää hydrauli-
voiman tuottamisessa, liikkuvan nesteen avulla, mukaanlukien tasapainoinen siipipumppu.
Vickers yhtiö kasvoi tasaisesti ja oli pian pakoitettu siirtämään pääkonttori ollakseen lähellä tärkeimpiä autoteollisuuden ja teollisuuden asiakkaitaan.
To supply small scale power that was impractical for individual steam engines, central station hydraulic systems were developed. Hydraulic power was used to operate cranes and other machinery in British ports and elsewhere in Europe. The largest hydraulic system was in London. Hydraulic power was used extensively in Bessemer steel production.
Hydraulic power was also used for elevators, to operate canal locks and rotating sections of bridges.
Some of these systems remained in use well into the twentieth century.
-------------------
Vickers was always interested in machinery and mechanics and was a self-taught master machinist. He served in World War I in France with the US Army Signal Corps, where he learned about the first generations of electronics and radio. Returning to southern California after the war, he founded Vickers Manufacturing Co., later to be called Vickers Inc.
Initially his company was principally engaged in general mechanical and machining work. The famous author and sportsman Zane Grey once came to his shop to have a large salt water fishing reel repaired. Grey decided that the young Harry Vickers was a man with a future, and offered to arrange for him to be tutored in calculus and other engineering disciplines at night by professors from the University of Southern California.
Vickers mechanical ability in combination with his electronic and engineering training formed the basis for his ability to invent, test and manufacture his early hydraulic innovations, which included the first hydraulic power steering system. He went on to invent numerous key components fundamental to the rapid growth of the fluid power industry, including his most famous innovation, the balanced vane pump. Vickers Inc. grew steadily, eventually moving its headquarters to Detroit to be closer to its major automotive and industrial customers.
He was called the "Father of Industrial Hydraulics" by the American Society of Mechanical Engineers, who gave him the Society's highest award, the ASME Medal, in 1956.
---------------------------------
Joseph Bramah patentoi hydraulisen puristimen vuonna 1795. Työskenteli Bramah kaupassa, kun Henry Maudslay ehdotti kupin pakkaamista käärimällä sen nahkaan.
Koska se tuotti erinomaisen työtehon hydraulisella puristimella, hieman myöhemmin siirryttiin käyttämään menetelmää höyry käyttöisessä vasarassa metalli taonnassa.
Menetelmä kehitti voimaa joka oli pienessä tilassa.
Höyrykoneesta voimansa saava järjestelmä tuotti pieneen tilavuuteen pakattua työntö tai nosto-voimaa joka oli käytännöllistä ja jonka perusteella hydrauliset järjestelmät kehitettiin nykyiseen muotoonsa
Single action piston cylinter / Yksitoimi sylinteri (työntö)
Hydrauli voimaa käytettiin nostomissa ja muissa koneissa Englannin satamissa ja muuallakin Euroopassa. Suurin hydraulinen järjestelmä oli Lontoossa. Hydraulinen voima on käytetty myös suuressa mittakaavassa Bessemer teräksen tuottamisessa.
Kaksi toimi sylinteri (työntö - veto)
Hydraulista voimaa hyödynnettiin myös hissien toiminnassam kanavan lukkojen ja erilaisten siltojen pyörivissa osissa. Muutama näistä järjestelmistä oli käyttössä yhä pitkälle seuraavalle vuosisadalle.
Harry Franklin Vickers oli mies jota kutsutaan Teollisuus Hydrauliikan Isäksi. (ASME)
Vickersiä oli aina kiinnostanut erilaiset koneet ja niiden mekaniikka, hän oli itseoppinut taitava koneistaja joka palveli ensimmäisen maailmansodan aikana Yhdysvaltojen armeijan Singnaali joukoissa Ranskassa, misä hän tutustui ja oppi enimmäisen sukupolven elektroniikkaa ja radio menetelmiä.
Aluksi hän suoritti yleensä pääasiassa mekaanisia töitä ja erilaisia koneistustöitä. Kuuluisa kirjailija ja urheilija Zane Grey tuli erään kerran hänen liikkeeseen ja pyysi korjaamaan suurta suolaisen veden kalastus kelaa. Korjauksen jälkeen Grey näkee, että nuori Harry Vickersin oli mies, jolla on tulevaisuus, ja tarjoutui järjestämään niin että hän voi saada iltaisin opetusta laskennassa ja muissa suunnittelu osa-alueissa professoreilta Etelä Karoliinan Yliopistossa.
Vickers jatkoi, keksien monta ratkaisevaa vaikutinta ja avaintekijää hydrauli-
Vickers yhtiö kasvoi tasaisesti ja oli pian pakoitettu siirtämään pääkonttori ollakseen lähellä tärkeimpiä autoteollisuuden ja teollisuuden asiakkaitaan.
keskiviikko 9. maaliskuuta 2016
Hydro Master II-osa
Kun Länsi-Suomen Sokeri Oy (tänään Apetit Oy) ei voinut pitää Säkylän tehdasta
ympäri vuoden tominnassa, koska sokerijuurikas oli kausiluonteinen viljely ja kasvu tavoiltaan, yhtiö osti toiminnan tueksi vuonna 1958 Korpivaara Oy:ltä konepajan, ja sen mukana hydraulisten Hydro-Master traktori-kaivureiden valmistusoikeuden.
Valmet 361D ja Hydro-Master 240
Työstökoneet, kaivurit ja pääosa henkilökuntaa siirtyi kaupan myötä Helsingistä Säkylään. Samaan aikaan suurimittainen metsä- ja suo- ojittamisen suunnitelma,
ns Mera-ohjelma, oli tulossa toteutus vaiheeseen ja kaivureille löytyi kysyntä.
Hydro-Master 240 (Lännen Sokeri Oy)
Hydro-Masterin rinnalle esiteltiin vuonna 1963 ensimmäinen tehtaan itse kehittämä malli, Lännen Ukko-Mestari.
Muutamassa vuodessa Lännen valtasi puolet Suomen traktorikaivuri markkinoista.
Ukko-Mestari koeita, sen eri versioita 2T, 3T, 4T, UM 352, UM 355, 475 valmistettiin
noin 200 kappaletta vuodessa.
Pahin kilpailija oli Puolustuslaitoksen Vammaskosken Tehtaan Vammas Kersantti.
1960-luvun lopulla Ukko-Mestari varustettiin ensimmäisen kerran yhtiön itse valmistamalla etukuormaajalla.
-----
Ensimmäisen Lännen-merkkinen pyöräalustainen kaivinkoneen prototyyppi valmistui 1970, ja tela-alustainen kaivinkone saatiin sarjatuotantoon 1972. Ensimmäinen kokonaan komponenttirakenteinen kaivurikuormaaja valmistui Lännessä 1982.
ympäri vuoden tominnassa, koska sokerijuurikas oli kausiluonteinen viljely ja kasvu tavoiltaan, yhtiö osti toiminnan tueksi vuonna 1958 Korpivaara Oy:ltä konepajan, ja sen mukana hydraulisten Hydro-Master traktori-kaivureiden valmistusoikeuden.
Valmet 361D ja Hydro-Master 240
ns Mera-ohjelma, oli tulossa toteutus vaiheeseen ja kaivureille löytyi kysyntä.
Hydro-Master 240 (Lännen Sokeri Oy)
Hydro-Masterin rinnalle esiteltiin vuonna 1963 ensimmäinen tehtaan itse kehittämä malli, Lännen Ukko-Mestari.
Fodrson power major ja Hydro-Master 240
Muutamassa vuodessa Lännen valtasi puolet Suomen traktorikaivuri markkinoista.
Ukko-Mestari koeita, sen eri versioita 2T, 3T, 4T, UM 352, UM 355, 475 valmistettiin
1960-luvun lopulla Ukko-Mestari varustettiin ensimmäisen kerran yhtiön itse valmistamalla etukuormaajalla.
-----
Ensimmäisen Lännen-merkkinen pyöräalustainen kaivinkoneen prototyyppi valmistui 1970, ja tela-alustainen kaivinkone saatiin sarjatuotantoon 1972. Ensimmäinen kokonaan komponenttirakenteinen kaivurikuormaaja valmistui Lännessä 1982.
lauantai 5. maaliskuuta 2016
Kaivukone maailma on erilainen - Excavator world is different
The cable excavator derives from William S. Otis’ steam shovel, which was made in 1835. The first ever shovel to be documented, it was rail-mounted and consisted of a one-cubic yard (0.76 m3) dipper and a boom. It was capable of swinging only half-circle.
It did not take off immediately, as most projects continued to be excavated by hand. Otis also had patents on the shovel that most companies could not access until well after his death.
The first fully-revolving machine was built by Whitaker & Sons (England) in 1884, but it was not hugely popular.
Gradually, companies began to develop an interest in this hard-working machine. Companies such as Bucyrus began developing and manufacturing shovels for use in mining quarries. Bucyrus produced the 120-B, the first machine to produce full revolutions.
Vaijeri kaivukoneet perustuvat on William S. Otisin kaivinkone joka valmistettiin vuonna 1835. kun kaikkien aikojen ensimmäinen lapio dokumentoidaan. Kone oli kiskoilla kulkeva ja siinä oli yhden kuutio yard (0,76 m3) kauha puomi ja lisäksi nostopuomi. Se kykeni kääntymään vain puoli-ympyrän. Se ei valloitanut markkinoita välittömästi koska tuohon aikaan suurin osa hankkeista edelleen kaivetaan käsityönä.
Otis oli lisäksi patentoinut kauhan, niin että suurin osa yrityksistä ei voinut saada vasta valmistusoikeutta, ennen kuin pitkän ajan kuluttua, hänen kuolemansa jälkeen
Ensimmäisen kokonaan pyörivän kaivinkoneen rakensi Whitaker & Sons (Englanti) vuonna 1884, mutta se ei koskaan ehtinyt saavuttaa suurta suosiota.
Hiljakseen monet koneita valmistavat yritykset alkoivat osoittaa yhä kasvavaa kiinnostusta tähän uutteraan laitteeseen. Sellaiset yritykset kuten Bucyrus, alkoi kehitellä sekä valmistaa kaivinkoneita kaivosteollisuuden louhos käyttöön. Ensimmäinen tälläinen kaivuri oli jonka Bucyrus valmisti oli malli 120-B, ja myös ensimmäinen ympäri kokonaan pyörivä kaivin kone.
------------------
Until the 1920s, when manufacturing companies were beginning to emerge, shovels were powered by steam and mounted on rails, making their use and mobility very restrictive. Shovels experienced a sharp change, as did most earthmoving machinery, and companies began producing machines that were powered by gas and oil. No longer were these machines just mounted on rails.
Companies began mounting them on crawlers and wheels as well.
With the onset of the hydraulic excavator, cable excavators met somewhat of a decline, especially when it came to small- to medium-sized excavators. They continued their existence, however, and were popular for large, heavy-duty excavation projects.
1920 luvulla kun teollisuusyhtiöt alkoivat valmistaa kaivinkoneita niiden käyttövoima oli höyry ja kaivurit asennettiin kiskoille, joten niiden käyttö ja liikkuvuus oli hyvin rajoitettu. Kaivurien valmistus koki jyrkän muutoksen, aivan samoin kuin useimmat maanrakennuskoneet, ja yhtiöt alkoivat valmistaa koneita, joiden käyttövoimana oli kaasusta ja öljy. Näitä koneita ei enää asennettu kiskoille muutamia lukuunottamatta vaan yritykset alkoivat varustaa niitä telaketjuilla ja myös pyörillä liikkuviksi.
Hydraulisten kaivinkoneiden vallatessa markkinoita vaijeri käyttöisiltä kaivureilta,
etenkin pienemmissä ja keskisuuressa painoluokassa, vaijeri-koneet pitivät kuitenkin jonkinlaisen markkina osuuden, ja säilyttivät oman erityisen paikkansa suurissa ja raskaissa kaivostoiminnassa samoin pitkää ulottuvuutta vaativissa ruoppaustöissä
kuten jokien perkaukset ja patotyömaat.
-----------------------
By the 1930s, the Great Depression had knocked out many excavator companies. Those that remained carried on with steadfast determination. While hydraulic excavators dominated the excavator group, cable excavators were given a rebirth in the mining industry. Bucyrus International, formerly Bucryus-Erie, detected this and produced machines to meet the demands of the industry. The model 120-B was its first mine and quarry shovel. Built in 1925, it had a five cubic yard (3.8 m3) capacity.
Three hundred of these were produced before they were discontinued 26 years later.
Cable excavators were also made multi-functional with the use of attachments. Implements made the boom longer, making it a fair rival to its cousin, the stripping shovel. The cable excavator could not produce the same results as the stripping shovel but it was somewhat successful in smaller applications. These types, sometimes referred to as highlifts, reached the height of their popularity in the 1950s.
In a period when most companies were producing machines bigger than the next, very few manufacturers dared to venture larger with the cable excavator. Those that did were in it for the long haul. Manufacturers such as Menck & Hambrock, Ruston & Hornsby, Clark/Lima, P&H, Bucyrus, Marion, and American Hoist & Derrick Co. attempted what others did not dare—producing machines with a capacity larger than six cubic yards (4.6 m3).
----------------
1930 luvun suuri lamakausi ehti pudottaa pois monia koneita valmistavia yrityksiä. Kuitenkin ne, jotka säilyivät jatkoivat toimintaansa lujina ja määrätietoisesti.
Vaikka hydrauliset kaivinkoneet hallitsivat valmistettavien kaivukoneiden ryhmää, vaijeri kaivukoneet saivat kokea uudelleensyntymisen kaivosteollisuudessa.
Bucyrus International aikaisemmin Bucyrus-Erie, huomasi tämän ja tuotti koneita kaivos-teollisuuden tarpeiden täyttämiseksi. 120-B oli yhtiön ensimmäinen kaivos ja louhos käyttöön tarkoitettu kone. Tässä 1925 rakennetussa kaivurissa oli viiden kuutio yardin (3,8 m3) kauha-kapasiteetti. Kolmesataa tälläista konetta ehdittiin valmistaa ennen kuin tuotanto lopetettiin 26 vuotta myöhemmin.
Vaijeri käyttöisiin kaivureihin tehtiin myös monikäyttöisiä lisälaitteita ja työvälineitä valmistettiin mm pidempi puomisto, jonka ansiosta niistä saatiin käypä kilpailija hydraulisille serkkuille, joiden ulottuma oli paljon lyhyempi, kauhan täyttö ja tyhjennys onnistui kaukaa, jopa 30 - 60 metrin etäisyydeltä.
Vaikka vaijeri-koneet eivät pystyneet samaan työtulokseen kuin hydraulisella kauhan toiminnalla varustetut kaivurit, ne menestyivät jonkin verran muissa sovelluksissa. Nämä joita joskus kutsutaan korkealle nostavat saavutti suosio huipun 1950-luvulla.
source
http://www.ritchiewiki.com/wiki/index.php/Cable_Excavator#ixzz41pjKgBIK
It did not take off immediately, as most projects continued to be excavated by hand. Otis also had patents on the shovel that most companies could not access until well after his death.
The first fully-revolving machine was built by Whitaker & Sons (England) in 1884, but it was not hugely popular.
Gradually, companies began to develop an interest in this hard-working machine. Companies such as Bucyrus began developing and manufacturing shovels for use in mining quarries. Bucyrus produced the 120-B, the first machine to produce full revolutions.
Vaijeri kaivukoneet perustuvat on William S. Otisin kaivinkone joka valmistettiin vuonna 1835. kun kaikkien aikojen ensimmäinen lapio dokumentoidaan. Kone oli kiskoilla kulkeva ja siinä oli yhden kuutio yard (0,76 m3) kauha puomi ja lisäksi nostopuomi. Se kykeni kääntymään vain puoli-ympyrän. Se ei valloitanut markkinoita välittömästi koska tuohon aikaan suurin osa hankkeista edelleen kaivetaan käsityönä.
Otis oli lisäksi patentoinut kauhan, niin että suurin osa yrityksistä ei voinut saada vasta valmistusoikeutta, ennen kuin pitkän ajan kuluttua, hänen kuolemansa jälkeen
Ensimmäisen kokonaan pyörivän kaivinkoneen rakensi Whitaker & Sons (Englanti) vuonna 1884, mutta se ei koskaan ehtinyt saavuttaa suurta suosiota.
Hiljakseen monet koneita valmistavat yritykset alkoivat osoittaa yhä kasvavaa kiinnostusta tähän uutteraan laitteeseen. Sellaiset yritykset kuten Bucyrus, alkoi kehitellä sekä valmistaa kaivinkoneita kaivosteollisuuden louhos käyttöön. Ensimmäinen tälläinen kaivuri oli jonka Bucyrus valmisti oli malli 120-B, ja myös ensimmäinen ympäri kokonaan pyörivä kaivin kone.
------------------
Until the 1920s, when manufacturing companies were beginning to emerge, shovels were powered by steam and mounted on rails, making their use and mobility very restrictive. Shovels experienced a sharp change, as did most earthmoving machinery, and companies began producing machines that were powered by gas and oil. No longer were these machines just mounted on rails.
Companies began mounting them on crawlers and wheels as well.
With the onset of the hydraulic excavator, cable excavators met somewhat of a decline, especially when it came to small- to medium-sized excavators. They continued their existence, however, and were popular for large, heavy-duty excavation projects.
Hydraulisten kaivinkoneiden vallatessa markkinoita vaijeri käyttöisiltä kaivureilta,
etenkin pienemmissä ja keskisuuressa painoluokassa, vaijeri-koneet pitivät kuitenkin jonkinlaisen markkina osuuden, ja säilyttivät oman erityisen paikkansa suurissa ja raskaissa kaivostoiminnassa samoin pitkää ulottuvuutta vaativissa ruoppaustöissä
kuten jokien perkaukset ja patotyömaat.
-----------------------
By the 1930s, the Great Depression had knocked out many excavator companies. Those that remained carried on with steadfast determination. While hydraulic excavators dominated the excavator group, cable excavators were given a rebirth in the mining industry. Bucyrus International, formerly Bucryus-Erie, detected this and produced machines to meet the demands of the industry. The model 120-B was its first mine and quarry shovel. Built in 1925, it had a five cubic yard (3.8 m3) capacity.
Three hundred of these were produced before they were discontinued 26 years later.
In a period when most companies were producing machines bigger than the next, very few manufacturers dared to venture larger with the cable excavator. Those that did were in it for the long haul. Manufacturers such as Menck & Hambrock, Ruston & Hornsby, Clark/Lima, P&H, Bucyrus, Marion, and American Hoist & Derrick Co. attempted what others did not dare—producing machines with a capacity larger than six cubic yards (4.6 m3).
----------------
1930 luvun suuri lamakausi ehti pudottaa pois monia koneita valmistavia yrityksiä. Kuitenkin ne, jotka säilyivät jatkoivat toimintaansa lujina ja määrätietoisesti.
Vaikka hydrauliset kaivinkoneet hallitsivat valmistettavien kaivukoneiden ryhmää, vaijeri kaivukoneet saivat kokea uudelleensyntymisen kaivosteollisuudessa.
Vaijeri käyttöisiin kaivureihin tehtiin myös monikäyttöisiä lisälaitteita ja työvälineitä valmistettiin mm pidempi puomisto, jonka ansiosta niistä saatiin käypä kilpailija hydraulisille serkkuille, joiden ulottuma oli paljon lyhyempi, kauhan täyttö ja tyhjennys onnistui kaukaa, jopa 30 - 60 metrin etäisyydeltä.
Vaikka vaijeri-koneet eivät pystyneet samaan työtulokseen kuin hydraulisella kauhan toiminnalla varustetut kaivurit, ne menestyivät jonkin verran muissa sovelluksissa. Nämä joita joskus kutsutaan korkealle nostavat saavutti suosio huipun 1950-luvulla.
source
http://www.ritchiewiki.com/wiki/index.php/Cable_Excavator#ixzz41pjKgBIK
keskiviikko 2. maaliskuuta 2016
Excavation work Panama Canal
The earliest mention of a canal across the Isthmus of Panama dates back to 1534, when Charles V, Holy Roman Emperor and King of Spain, ordered a survey for a route through the Americas that would ease the voyage for ships traveling between Spain and Peru.
Such a route would have given the Spanish a military advantage over the Portuguese. In 1788, Thomas Jefferson suggested that the Spanish should create it since it would be a less treacherous route than going around the southern tip of South America, which tropical ocean currents would naturally widen thereafter. During an expedition from 1788 to 1793, Alessandro Malaspina outlined plans for its construction. Given the strategic location of Panama and the potential offered by its narrow isthmus separating two great oceans, other trade links in the area were attempted over the years.
The ill-fated Darien scheme was launched by the Kingdom of Scotland in 1698 to set up an overland trade route. Generally inhospitable conditions thwarted the effort, and it was abandoned in April 1700. Another effort was made in 1843. According to the New York Daily Tribune, August 24, 1843, a contract was entered into by Barings of London and the Republic of New Granada for the construction of a canal across the Isthmus of Darien (Isthmus of Panama). They referred to it as the Atlantic and Pacific Canal and was a wholly British endeavor. The article states that it was expected to be completed in five years. The plan was not carried out. At nearly the same time, other ideas were floated, including a canal (and or a railroad) across Mexico's Isthmus of Tehuantepec. Nothing came of that plan either.
Such a route would have given the Spanish a military advantage over the Portuguese. In 1788, Thomas Jefferson suggested that the Spanish should create it since it would be a less treacherous route than going around the southern tip of South America, which tropical ocean currents would naturally widen thereafter. During an expedition from 1788 to 1793, Alessandro Malaspina outlined plans for its construction. Given the strategic location of Panama and the potential offered by its narrow isthmus separating two great oceans, other trade links in the area were attempted over the years. The ill-fated Darien scheme was launched by the Kingdom of Scotland in 1698 to set up an overland trade route. Generally inhospitable conditions thwarted the effort, and it was abandoned in April 1700.
In 1846 the Mallarino–Bidlack Treaty granted the United States transit rights, and the right to intervene militarily in the ithmus. In 1849, the discovery of gold in California created great interest in a crossing between the Atlantic and Pacific Oceans.The Panama Railway was built by the United States to cross the isthmus and opened in 1855. This overland link became a vital piece of Western Hemisphere infrastructure, greatly facilitating trade and largely determining the later canal route. An all-water route between the oceans was still seen as the ideal solution, and in 1855 William Kennish, a Manx-born engineer working for the United States government, surveyed the isthmus and issued a report on a route for a proposed Panama Canal.
His report was published in a book entitled The Practicality and Importance of a Ship Canal to Connect the Atlantic and Pacific Oceans. In 1877 Armand Reclus, an officer with the French Navy, and Lucien Napoléon Bonaparte Wyse, two engineers, surveyed the route and published a French proposal for a canal. French success in building the Suez Canal, while a lengthy project, encouraged planning for one to cross the isthmus.
--------
Panaman kanavan historian ensimmäinen askel otettiin jo vuonna 1513, kun espanjalainen tutkimusmatkailija Vasco Núñez de Balboa ylitti Panaman kannaksen ensimmäisenä eurooppalaisena. Siitä lähtien käynnistettiin useita hankkeita kanavan rakentamiseksi. Ne kaikki jäivät pelkästään paperille. Varsinainen kanavahanke alkoi virallisesti vuonna 1880, kun Ranska aloittaa kanavan rakentamisen kannaksella.
Ajatus kanavan rakentamisesta Nicaraguaan oli myös ollut esillä, sillä maan Nicaraguanjärveltä ei olisi ollut vaikeaa päästä Karibianmereltä - Tyynellemerelle.
Kanava kuitenkin rakennettiin Panamaan, sillä kannas on siellä kapeampi kuin missään muualla Keski-Amerikassa.
Vuoteen 1889 mennessä ranskalaisten hanke oli törmännyt moniin ongelmiin. Lukuisat onnettomuudet, sekä kanavan yhtiön rahoituskriisi ja korruptioskandaalit pakottivat Ranskan luopumaan keskeneräisestä kanavahankkeesta vuoden 1889 lopussa ja 1903 Yhdysvaltain presidentti Theodore Roosevelt osti Ranskalta tämän keskeneräisen kanavatyömaan hintaan 40 miljoonaa dollaria.
Rakennustyöt alkoivat vuonna 1904, ja kanava avattiin liikenteelle vuonna 1914.
------------------------
The first attempt to construct a canal through what was then Colombia's province of Panama began on 1 January 1881. The project was inspired by the diplomat Ferdinand de Lesseps, who was able to raise considerable finance in France as a result of the huge profits generated by his successful construction of the Suez Canal.
De Lesseps wanted a sea-level canal as at Suez, but only visited the site a few times, during the dry season which lasts only four months of the year. His men were totally unprepared for the rainy season, during which the Chagres River, where the canal started, became a raging torrent, rising up to 35 feet (10m). The dense jungle was alive with venomous snakes, insects and spiders and the worst aspect was the yellow fever and malaria (and other tropical diseases) which killed thousands of workers: by 1884 the death rate was over 200 per month. Public health measures were ineffective because the role of the mosquito as a disease vector was then unknown. Conditions were downplayed in France to avoid recruitment problems,
but the high mortality made it difficult to maintain an experienced workforce. With this, they couldn't continue their work on the Panama Canal.
The main cut through the mountain at Culebra had to continually be widened, and its slopes reduced, to minimize landslides into the canal. Steam shovels had been invented but were still primitive. Other mechanical and electrical equipment was limited in its capabilities, and steel equipment rusted rapidly in the climate.
In France, de Lesseps had kept the investment and supply of workers flowing long after it was obvious that the targets were not being met but eventually the money ran out.
The French effort went bankrupt in 1889 after reportedly spending US$287,000,000 and losing an estimated 22,000 lives to disease and accidents, wiping out the savings of 800,000 investors. Work was suspended on May 15 and in the ensuing scandal, known as the Panama affair, various of those deemed responsible were prosecuted, including Gustave Eiffel. De Lesseps and his son Charles were found guilty of misappropriation of funds and sentenced to five years' imprisonment, though this was later overturned and the father, at 88, was never imprisoned.
In 1894, a second French company, the Compagnie Nouvelle du Canal de Panama, was created to take over the project. A minimal workforce of a few thousand people was employed primarily to comply with the terms of the Colombian Panama Canal concession, to run the Panama Railroad, and to maintain the existing excavation and equipment in salable condition. The company sought a buyer for these assets, with an asking price of US$109,000,000. In the meanwhile they continued with enough activity to maintain their franchise and Bunau-Varilla eventually managed to persuade de Lesseps that a lock and lake canal was more realistic than a sea-level canal
-----
At this time, the President and the Senate of the United States were interested in establishing a canal across the isthmus, with some favoring a canal across Nicaragua and others advocating the purchase of the French interests in Panama. The French manager of the New Panama Canal Company, Phillipe Bunau-Varilla, who was seeking American involvement, asked for $100 million but accepted $40 million in the face of the Nicaraguan option. In June 1902, the U.S. Senate voted in favor of pursuing the Panamanian option, provided the necessary rights could be obtained, in the Spooner Act.
On January 22, 1903, the Hay–Herrán Treaty was signed by United States Secretary of State John M. Hay and Colombian Chargé Dr. Tomás Herrán. For $10m and an annual payment it would have granted the United States a renewable lease in perpetuity from Colombia on the land proposed for the canal. The treaty was ratified by the U.S. Senate on March 14, 1903, but the Senate of Colombia did not ratify it. Bunau-Varilla told President Theodore Roosevelt and Hay of a possible revolt by Panamanian rebels who aimed to separate from Colombia, and hoped that the United States would support the rebels with U.S. troops and money. Roosevelt changed tactics, based in part on the Mallarino–Bidlack Treaty of 1846, and actively supported the separation of Panama from Colombia and, shortly after recognizing Panama, signed a treaty with the new Panamanian government under similar terms to the Hay–Herrán Treaty.
On November 2, 1903, U.S. warships blocked sea lanes for possible Colombian troop movements en route to put down the rebellion. Panama declared independence on November 3, 1903. The United States quickly recognized the new nation. On November 6, 1903, Philippe Bunau-Varilla, as Panama's ambassador to the United States, signed the Hay–Bunau-Varilla Treaty, granting rights to the United States to build and indefinitely administer the Panama Canal Zone and its defenses. This is sometimes misinterpreted as the "99-year lease" because of misleading wording included in article 22 of the agreement. Almost immediately, the treaty was condemned by many Panamanians as an infringement on their country’s new national sovereignty. This would later become a contentious diplomatic issue between Colombia, Panama and the United States.
President Roosevelt famously stated that "I took the Isthmus, started the canal and then left Congress not to debate the canal, but to debate me." Several parties in the United States proposed this to be an act of war on Colombia: The New York Times called the support given by the United States to Mr. Bunau-Varilla an "act of sordid conquest." The New York Evening Post called it a "vulgar and mercenary venture." More recently, historian George Tindall labeled it "one of the greatest blunders in American foreign policy." It is often cited as the classic example of U.S. gunboat diplomacy in Latin America, and the best illustration of what Roosevelt meant by the old African adage, "speak softly and carry a big stick, you will go far." After the revolution in 1903, the Republic of Panama became a U.S. protectorate until 1939.
Thus in 1904, the United States purchased the French equipment and excavations, including the Panama Railroad, for US$40 million, of which $30 million related to excavations completed, primarily in the Gaillard Cut (then called the Culebra Cut), valued at about $1.00 per cubic yard. The United States also paid the new country of Panama $10 million plus $250,000 more each year. (In 1921, the United States paid Colombia US$10 million, plus US$250,000 per annum for several years; in return, Colombia recognized Panama under the terms of the Thomson–Urrutia Treaty.)
The U.S. formally took control of the canal property on May 4, 1904, inheriting from the French a depleted workforce and a vast jumble of buildings, infrastructure and equipment, much of it in poor condition. A U.S. government commission, the Isthmian Canal Commission (ICC), was established to oversee construction and was given control of the Panama Canal Zone, over which the United States exercised sovereignty. The commission reported directly to Secretary of War William Howard Taft and was directed to avoid the inefficiency and corruption that had plagued the French 15 years earlier.
On May 6, 1904, President Theodore Roosevelt appointed John Findley Wallace, formerly chief engineer and finally general manager of the Illinois Central Railroad, as chief engineer of the Panama Canal Project. Overwhelmed by the disease-plagued country and forced to use often dilapidated French infrastructure and equipment, as well as being frustrated by the overly bureaucratic ICC, Wallace resigned abruptly in June 1905.
He was succeeded by John Frank Stevens, a self-educated engineer who had built the Great Northern Railroad. Stevens was not a member of the ICC; he increasingly viewed its bureaucracy as a serious hindrance and ended up bypassing the commission and sending requests and demands directly to the Roosevelt Administration in Washington.
One of Stevens' first achievements in Panama was in building and rebuilding the housing, cafeterias, hotels, water systems, repair shops, warehouses, and other infrastructure needed by the thousands of incoming workers. Stevens began the recruitment effort to entice thousands of workers from the United States and other areas to come to the Canal Zone to work, and tried to provide accommodation in which the incoming workers could work and live in reasonable safety and comfort. He also re-established and enlarged the railway that was to prove crucial in transporting millions of tons of soil from the cut through the mountains to the dam across the Chagres river.
Colonel William C. Gorgas had been appointed chief sanitation officer of the canal construction project in 1904. Gorgas implemented a range of measures to minimize the spread of deadly diseases, particularly yellow fever and malaria which had recently been shown to be mosquito-borne following the work of Dr. Carlos Finlay and Dr. Walter Reed. There was investment in extensive sanitation projects, including city water systems, fumigation of buildings, spraying of insect-breeding areas with oil and larvicide, installation of mosquito netting and window screens, and elimination of stagnant water.
Despite opposition from the Commission (one member said his ideas were barmy), Gorgas persisted and when Stevens arrived, he threw his weight behind the project. After two years of extensive work, the mosquito-spread diseases were nearly eliminated.[35] Nevertheless, even with all this effort, about 5,600 workers died of disease and accidents during the U.S. construction phase of the canal.
President Theodore Roosevelt sitting on a steam shovel at Culebra Cut, 1906
Construction work on the Gaillard Cut is shown in this photograph from 1907
In 1905, a U.S. engineering panel was commissioned to review the canal design, which still had not been finalized. It recommended to President Roosevelt a sea-level canal, as had been attempted by the French. However, in 1906 Stevens, who had seen the Chagres in full flood, was summoned to Washington and declared a sea-level approach to be 'an entirely untenable proposition'.
He argued in favor of a canal using a lock system to raise and lower ships from a large reservoir 85 ft (26 m) above sea level. This would create both the largest dam (Gatun Dam) and the largest man-made lake (Gatun Lake) in the world at that time. The water to refill the locks would be taken from Gatun Lake by opening and closing enormous gates and valves and letting gravity propel the water from the lake. Gatun Lake would connect to the Pacific through the mountains at the Gaillard (Culebra) Cut. Stevens successfully convinced Roosevelt of the necessity and feasibility of the alternative scheme.
The construction of a canal with locks required the excavation of more than an additional 170,000,000 cu yd (129,974,326 m3) of material over and above the 30,000,000 cu yd (22,936,646 m3) excavated by the French. As quickly as possible, the Americans replaced or upgraded the old, unusable French equipment with new construction equipment that was designed for a much larger and faster scale of work. About 102 new large, railroad-mounted steam shovels were purchased and brought in from the United States.
These were joined by enormous steam-powered cranes, giant hydraulic rock crushers, cement mixers, dredges, and pneumatic power drills, nearly all of which was manufactured by new, extensive machine-building technology developed and built in the United States. The railroad also had to be comprehensively upgraded with heavy-duty, double-tracked rails over most of the line to accommodate new rolling stock. In many places, the new Gatun Lake flooded over the original rail line, and a new line had to be constructed above Gatun Lake's waterline.
In 1907, Stevens resigned as chief engineer, having in his view made success certain. His replacement, appointed by President Theodore Roosevelt, was U.S. Army Major George Washington Goethals of the U.S. Army Corps of Engineers (soon to be promoted to lieutenant colonel and later to colonel), a strong, United States Military Academy–trained leader and civil engineer with experience of canals (unlike Stevens). Goethals would direct the work in Panama to a successful conclusion.
Goethals divided the engineering and excavation work into three divisions: Atlantic, Central, and Pacific. The Atlantic division, under Major William L. Sibert, was responsible for construction of the massive breakwater at the entrance to Limon Bay, the Gatun locks and their 5.6 km (3.5 mi) approach channel, and the immense Gatun Dam. The Pacific Division, under Sydney B. Williamson (the only civilian member of this high-level team), was similarly responsible for the Pacific 4.8 km (3.0 mi) breakwater in Panama Bay, the approach channel to the locks, and the Miraflores and Pedro Miguel locks and their associated dams and reservoirs.
Spanish laborers working on the Panama Canal in early 1900s
The Central division, under Major David du Bose Gaillard of the United States Army Corps of Engineers, was assigned one of the most difficult parts: excavating the Culebra Cut through the continental divide to connect Gatun Lake to the Pacific Panama Canal locks.
On October 10, 1913, President Woodrow Wilson sent a signal from the White House by telegraph which triggered the explosion that destroyed the Gamboa Dike. This flooded the Culebra Cut, thereby joining the Atlantic to the Pacific Ocean. Alexandre La Valley (1887) (a floating crane built by Lobnitz & Company, and launched in 1887) was the first self-propelled vessel to transit the canal from ocean to ocean. This vessel crossed the canal from the Atlantic in stages during construction, finally reaching the Pacific on January 7, 1914. Cristobal (a cargo and passenger ship built by Maryland Steel, and launched in 1902 as SS Tremont) was the first ship to transit the canal from ocean to ocean on August 3, 1914.
The construction of the canal was completed in 1914, 401 years after Panama was first crossed by Vasco Núñez de Balboa. The United States spent almost $375,000,000 (roughly equivalent to $8,600,000,000 now) to finish the project. This was by far the largest American engineering project to date.
The canal was formally opened on August 15, 1914, with the passage of the cargo ship SS Ancon.
The opening of Panama Canal in 1914 caused a severe drop in traffic along Chilean ports due to shifts in the maritime trade routes.
Such a route would have given the Spanish a military advantage over the Portuguese. In 1788, Thomas Jefferson suggested that the Spanish should create it since it would be a less treacherous route than going around the southern tip of South America, which tropical ocean currents would naturally widen thereafter. During an expedition from 1788 to 1793, Alessandro Malaspina outlined plans for its construction. Given the strategic location of Panama and the potential offered by its narrow isthmus separating two great oceans, other trade links in the area were attempted over the years.
The ill-fated Darien scheme was launched by the Kingdom of Scotland in 1698 to set up an overland trade route. Generally inhospitable conditions thwarted the effort, and it was abandoned in April 1700. Another effort was made in 1843. According to the New York Daily Tribune, August 24, 1843, a contract was entered into by Barings of London and the Republic of New Granada for the construction of a canal across the Isthmus of Darien (Isthmus of Panama). They referred to it as the Atlantic and Pacific Canal and was a wholly British endeavor. The article states that it was expected to be completed in five years. The plan was not carried out. At nearly the same time, other ideas were floated, including a canal (and or a railroad) across Mexico's Isthmus of Tehuantepec. Nothing came of that plan either.
Such a route would have given the Spanish a military advantage over the Portuguese. In 1788, Thomas Jefferson suggested that the Spanish should create it since it would be a less treacherous route than going around the southern tip of South America, which tropical ocean currents would naturally widen thereafter. During an expedition from 1788 to 1793, Alessandro Malaspina outlined plans for its construction. Given the strategic location of Panama and the potential offered by its narrow isthmus separating two great oceans, other trade links in the area were attempted over the years. The ill-fated Darien scheme was launched by the Kingdom of Scotland in 1698 to set up an overland trade route. Generally inhospitable conditions thwarted the effort, and it was abandoned in April 1700.
In 1846 the Mallarino–Bidlack Treaty granted the United States transit rights, and the right to intervene militarily in the ithmus. In 1849, the discovery of gold in California created great interest in a crossing between the Atlantic and Pacific Oceans.The Panama Railway was built by the United States to cross the isthmus and opened in 1855. This overland link became a vital piece of Western Hemisphere infrastructure, greatly facilitating trade and largely determining the later canal route. An all-water route between the oceans was still seen as the ideal solution, and in 1855 William Kennish, a Manx-born engineer working for the United States government, surveyed the isthmus and issued a report on a route for a proposed Panama Canal.
His report was published in a book entitled The Practicality and Importance of a Ship Canal to Connect the Atlantic and Pacific Oceans. In 1877 Armand Reclus, an officer with the French Navy, and Lucien Napoléon Bonaparte Wyse, two engineers, surveyed the route and published a French proposal for a canal. French success in building the Suez Canal, while a lengthy project, encouraged planning for one to cross the isthmus.
--------
Panaman kanavan historian ensimmäinen askel otettiin jo vuonna 1513, kun espanjalainen tutkimusmatkailija Vasco Núñez de Balboa ylitti Panaman kannaksen ensimmäisenä eurooppalaisena. Siitä lähtien käynnistettiin useita hankkeita kanavan rakentamiseksi. Ne kaikki jäivät pelkästään paperille. Varsinainen kanavahanke alkoi virallisesti vuonna 1880, kun Ranska aloittaa kanavan rakentamisen kannaksella.
Ajatus kanavan rakentamisesta Nicaraguaan oli myös ollut esillä, sillä maan Nicaraguanjärveltä ei olisi ollut vaikeaa päästä Karibianmereltä - Tyynellemerelle.
Kanava kuitenkin rakennettiin Panamaan, sillä kannas on siellä kapeampi kuin missään muualla Keski-Amerikassa.
Rakennustyöt alkoivat vuonna 1904, ja kanava avattiin liikenteelle vuonna 1914.
------------------------
The first attempt to construct a canal through what was then Colombia's province of Panama began on 1 January 1881. The project was inspired by the diplomat Ferdinand de Lesseps, who was able to raise considerable finance in France as a result of the huge profits generated by his successful construction of the Suez Canal.
De Lesseps wanted a sea-level canal as at Suez, but only visited the site a few times, during the dry season which lasts only four months of the year. His men were totally unprepared for the rainy season, during which the Chagres River, where the canal started, became a raging torrent, rising up to 35 feet (10m). The dense jungle was alive with venomous snakes, insects and spiders and the worst aspect was the yellow fever and malaria (and other tropical diseases) which killed thousands of workers: by 1884 the death rate was over 200 per month. Public health measures were ineffective because the role of the mosquito as a disease vector was then unknown. Conditions were downplayed in France to avoid recruitment problems,
but the high mortality made it difficult to maintain an experienced workforce. With this, they couldn't continue their work on the Panama Canal.
The main cut through the mountain at Culebra had to continually be widened, and its slopes reduced, to minimize landslides into the canal. Steam shovels had been invented but were still primitive. Other mechanical and electrical equipment was limited in its capabilities, and steel equipment rusted rapidly in the climate.
The French effort went bankrupt in 1889 after reportedly spending US$287,000,000 and losing an estimated 22,000 lives to disease and accidents, wiping out the savings of 800,000 investors. Work was suspended on May 15 and in the ensuing scandal, known as the Panama affair, various of those deemed responsible were prosecuted, including Gustave Eiffel. De Lesseps and his son Charles were found guilty of misappropriation of funds and sentenced to five years' imprisonment, though this was later overturned and the father, at 88, was never imprisoned.
In 1894, a second French company, the Compagnie Nouvelle du Canal de Panama, was created to take over the project. A minimal workforce of a few thousand people was employed primarily to comply with the terms of the Colombian Panama Canal concession, to run the Panama Railroad, and to maintain the existing excavation and equipment in salable condition. The company sought a buyer for these assets, with an asking price of US$109,000,000. In the meanwhile they continued with enough activity to maintain their franchise and Bunau-Varilla eventually managed to persuade de Lesseps that a lock and lake canal was more realistic than a sea-level canal
-----
At this time, the President and the Senate of the United States were interested in establishing a canal across the isthmus, with some favoring a canal across Nicaragua and others advocating the purchase of the French interests in Panama. The French manager of the New Panama Canal Company, Phillipe Bunau-Varilla, who was seeking American involvement, asked for $100 million but accepted $40 million in the face of the Nicaraguan option. In June 1902, the U.S. Senate voted in favor of pursuing the Panamanian option, provided the necessary rights could be obtained, in the Spooner Act.
On January 22, 1903, the Hay–Herrán Treaty was signed by United States Secretary of State John M. Hay and Colombian Chargé Dr. Tomás Herrán. For $10m and an annual payment it would have granted the United States a renewable lease in perpetuity from Colombia on the land proposed for the canal. The treaty was ratified by the U.S. Senate on March 14, 1903, but the Senate of Colombia did not ratify it. Bunau-Varilla told President Theodore Roosevelt and Hay of a possible revolt by Panamanian rebels who aimed to separate from Colombia, and hoped that the United States would support the rebels with U.S. troops and money. Roosevelt changed tactics, based in part on the Mallarino–Bidlack Treaty of 1846, and actively supported the separation of Panama from Colombia and, shortly after recognizing Panama, signed a treaty with the new Panamanian government under similar terms to the Hay–Herrán Treaty.
On November 2, 1903, U.S. warships blocked sea lanes for possible Colombian troop movements en route to put down the rebellion. Panama declared independence on November 3, 1903. The United States quickly recognized the new nation. On November 6, 1903, Philippe Bunau-Varilla, as Panama's ambassador to the United States, signed the Hay–Bunau-Varilla Treaty, granting rights to the United States to build and indefinitely administer the Panama Canal Zone and its defenses. This is sometimes misinterpreted as the "99-year lease" because of misleading wording included in article 22 of the agreement. Almost immediately, the treaty was condemned by many Panamanians as an infringement on their country’s new national sovereignty. This would later become a contentious diplomatic issue between Colombia, Panama and the United States.
President Roosevelt famously stated that "I took the Isthmus, started the canal and then left Congress not to debate the canal, but to debate me." Several parties in the United States proposed this to be an act of war on Colombia: The New York Times called the support given by the United States to Mr. Bunau-Varilla an "act of sordid conquest." The New York Evening Post called it a "vulgar and mercenary venture." More recently, historian George Tindall labeled it "one of the greatest blunders in American foreign policy." It is often cited as the classic example of U.S. gunboat diplomacy in Latin America, and the best illustration of what Roosevelt meant by the old African adage, "speak softly and carry a big stick, you will go far." After the revolution in 1903, the Republic of Panama became a U.S. protectorate until 1939.
Thus in 1904, the United States purchased the French equipment and excavations, including the Panama Railroad, for US$40 million, of which $30 million related to excavations completed, primarily in the Gaillard Cut (then called the Culebra Cut), valued at about $1.00 per cubic yard. The United States also paid the new country of Panama $10 million plus $250,000 more each year. (In 1921, the United States paid Colombia US$10 million, plus US$250,000 per annum for several years; in return, Colombia recognized Panama under the terms of the Thomson–Urrutia Treaty.)
The U.S. formally took control of the canal property on May 4, 1904, inheriting from the French a depleted workforce and a vast jumble of buildings, infrastructure and equipment, much of it in poor condition. A U.S. government commission, the Isthmian Canal Commission (ICC), was established to oversee construction and was given control of the Panama Canal Zone, over which the United States exercised sovereignty. The commission reported directly to Secretary of War William Howard Taft and was directed to avoid the inefficiency and corruption that had plagued the French 15 years earlier.
On May 6, 1904, President Theodore Roosevelt appointed John Findley Wallace, formerly chief engineer and finally general manager of the Illinois Central Railroad, as chief engineer of the Panama Canal Project. Overwhelmed by the disease-plagued country and forced to use often dilapidated French infrastructure and equipment, as well as being frustrated by the overly bureaucratic ICC, Wallace resigned abruptly in June 1905.
He was succeeded by John Frank Stevens, a self-educated engineer who had built the Great Northern Railroad. Stevens was not a member of the ICC; he increasingly viewed its bureaucracy as a serious hindrance and ended up bypassing the commission and sending requests and demands directly to the Roosevelt Administration in Washington.
Colonel William C. Gorgas had been appointed chief sanitation officer of the canal construction project in 1904. Gorgas implemented a range of measures to minimize the spread of deadly diseases, particularly yellow fever and malaria which had recently been shown to be mosquito-borne following the work of Dr. Carlos Finlay and Dr. Walter Reed. There was investment in extensive sanitation projects, including city water systems, fumigation of buildings, spraying of insect-breeding areas with oil and larvicide, installation of mosquito netting and window screens, and elimination of stagnant water.
Despite opposition from the Commission (one member said his ideas were barmy), Gorgas persisted and when Stevens arrived, he threw his weight behind the project. After two years of extensive work, the mosquito-spread diseases were nearly eliminated.[35] Nevertheless, even with all this effort, about 5,600 workers died of disease and accidents during the U.S. construction phase of the canal.
President Theodore Roosevelt sitting on a steam shovel at Culebra Cut, 1906
Construction work on the Gaillard Cut is shown in this photograph from 1907
In 1905, a U.S. engineering panel was commissioned to review the canal design, which still had not been finalized. It recommended to President Roosevelt a sea-level canal, as had been attempted by the French. However, in 1906 Stevens, who had seen the Chagres in full flood, was summoned to Washington and declared a sea-level approach to be 'an entirely untenable proposition'.
He argued in favor of a canal using a lock system to raise and lower ships from a large reservoir 85 ft (26 m) above sea level. This would create both the largest dam (Gatun Dam) and the largest man-made lake (Gatun Lake) in the world at that time. The water to refill the locks would be taken from Gatun Lake by opening and closing enormous gates and valves and letting gravity propel the water from the lake. Gatun Lake would connect to the Pacific through the mountains at the Gaillard (Culebra) Cut. Stevens successfully convinced Roosevelt of the necessity and feasibility of the alternative scheme.
The construction of a canal with locks required the excavation of more than an additional 170,000,000 cu yd (129,974,326 m3) of material over and above the 30,000,000 cu yd (22,936,646 m3) excavated by the French. As quickly as possible, the Americans replaced or upgraded the old, unusable French equipment with new construction equipment that was designed for a much larger and faster scale of work. About 102 new large, railroad-mounted steam shovels were purchased and brought in from the United States.
These were joined by enormous steam-powered cranes, giant hydraulic rock crushers, cement mixers, dredges, and pneumatic power drills, nearly all of which was manufactured by new, extensive machine-building technology developed and built in the United States. The railroad also had to be comprehensively upgraded with heavy-duty, double-tracked rails over most of the line to accommodate new rolling stock. In many places, the new Gatun Lake flooded over the original rail line, and a new line had to be constructed above Gatun Lake's waterline.
In 1907, Stevens resigned as chief engineer, having in his view made success certain. His replacement, appointed by President Theodore Roosevelt, was U.S. Army Major George Washington Goethals of the U.S. Army Corps of Engineers (soon to be promoted to lieutenant colonel and later to colonel), a strong, United States Military Academy–trained leader and civil engineer with experience of canals (unlike Stevens). Goethals would direct the work in Panama to a successful conclusion.
Goethals divided the engineering and excavation work into three divisions: Atlantic, Central, and Pacific. The Atlantic division, under Major William L. Sibert, was responsible for construction of the massive breakwater at the entrance to Limon Bay, the Gatun locks and their 5.6 km (3.5 mi) approach channel, and the immense Gatun Dam. The Pacific Division, under Sydney B. Williamson (the only civilian member of this high-level team), was similarly responsible for the Pacific 4.8 km (3.0 mi) breakwater in Panama Bay, the approach channel to the locks, and the Miraflores and Pedro Miguel locks and their associated dams and reservoirs.
Spanish laborers working on the Panama Canal in early 1900s
The Central division, under Major David du Bose Gaillard of the United States Army Corps of Engineers, was assigned one of the most difficult parts: excavating the Culebra Cut through the continental divide to connect Gatun Lake to the Pacific Panama Canal locks.
On October 10, 1913, President Woodrow Wilson sent a signal from the White House by telegraph which triggered the explosion that destroyed the Gamboa Dike. This flooded the Culebra Cut, thereby joining the Atlantic to the Pacific Ocean. Alexandre La Valley (1887) (a floating crane built by Lobnitz & Company, and launched in 1887) was the first self-propelled vessel to transit the canal from ocean to ocean. This vessel crossed the canal from the Atlantic in stages during construction, finally reaching the Pacific on January 7, 1914. Cristobal (a cargo and passenger ship built by Maryland Steel, and launched in 1902 as SS Tremont) was the first ship to transit the canal from ocean to ocean on August 3, 1914.
The construction of the canal was completed in 1914, 401 years after Panama was first crossed by Vasco Núñez de Balboa. The United States spent almost $375,000,000 (roughly equivalent to $8,600,000,000 now) to finish the project. This was by far the largest American engineering project to date.
The opening of Panama Canal in 1914 caused a severe drop in traffic along Chilean ports due to shifts in the maritime trade routes.